A Denotational Engineering
of Programming Languages

Part 2:Many- sorted algebras
(Sections 2.10 — 2.14 of the book)

Andrzej Jacek Blikle
March 11th, 2021

Many-sorted algebras

A BAD NEWS
This theory Is technically a bit complicated.

A GOOD NEWS
You do not need to master it very deeply.

Mar 11th, 2021 A. Blikle - Denotational Engineering; Part 2 (15)

Many-sorted algebras intuitively

e algebra of data

signature % % signature
Th similar The algebra of expressions

NumBool algebras NumBOoolExp

— NumE 1

+ NumE X NumE +— NumE + I NumExp x NumExp

* : NumE x NumE +— NumE * : NumExp x NumExp

= :NumE x NumE +— BoolE = NumExp x NumExp

< :NumE x NumE +— BoolE < :NumExp x NumExp

tt — BoolE tt

not : BoolE — BooIE not : BoolExp

or : BoolE x BoolE +— BoolE or : BoolExp x BoolExp

— NUumExp
— NUumEXxp

— NUmEXxp
— BoolExp
— BOOIEXp
— BOOIEXp
— BOOIEXp
— BOOIEXp

Due to abstract errors all functions (in this case) can be made total

Mar 11th, 2021

A. Blikle - Denotational Engineering; Part 2 (15)

Abstract and concrete syntax

Algebra of expressions NumBoolExp repeated

1 — NumEXxp < :NumExp x NumExp +— BoolExp
+ NumExp X NumExp +— NumExp tt — BOOIEXp
* NumExp X NumExp +— NumExp not : BoolEXxp — BoolExp

= :NumExp x NumExp > BoolExp or : BoolExp x BoolExp + BoolExp

Abstract syntax Prefix notation: not (< (+(1,*(1,1),+(1,1)))

NUmExp = 1 | + (NumExp, NumExp) | * (NumExp, NumEXxp)
BoolExp = tt | =(NumExp, NumExp) | < (NumExp, NumExp) |
not (BoolExp) | oxr (BoolExp, BoolExp)

Concrete syntax Infix notation: not((1+(1*1)) < (1+41))

NumExp =1 | (NumExp + NumExp) | (NUmExp * NumExp)

BoolExp = tt| (NumEXxp = NumEXxp) | (NumEXxp < NumExp) |
not (BoolExp) | (BoolExp oxr BoolExp)

Mar 11th, 2021 A. Blikle - Denotational Engineering; Part 2 (15)

Abstract, concrete and colloquial syntax

Abstract syntax — algorithmically derivable from algebra's signature
not(<(+(1,*(1,1),+(1,1))) no creativity

Concrete syntax — an isomomorphic transformation: abstract - concrete

— not ((1+(1*1)) < (1+1)) creativity

Colloguial syntax — a restoring transformation: concrete < colloquial

— not (1+1*1 < 1+4+1) — here the omission of "unnecessary" parentheses

Colloquial assumptions creativity
* binds stronger than +

* and + bind stronger than <

Mar 11th, 2021 A. Blikle - Denotational Engineering; Part 2 (15)

Denotational semantics of concrete syntax

A two-sorted homomorphism

SN : NumExp — NumE
SB : BooExp +— BoolE

Semantic clauses (two examples): The meaning of a whole

IS a combination of the

SN[1]=1 meanings of its parts

SN[(exp-1 + exp-2)]=
SN[exp-1] + SN[exp-2] 2 max = 'overflow'
true = SN[exp-1] + SN[exp-2]

max — maximal number for a current implementation

Mar 11th, 2021 A. Blikle - Denotational Engineering; Part 2 (15)

Many-sorted algebras formally

Alg = (Sig, Car, Fun, car, fun) — algebra

Sig = (Cn, Fn, ar, so) — signature

Car — a finite family of sets called carriers

Fun — a finite family of function called constructors
Cn — finite set of words; carrier names

Fn — finite set of words; function names

ar : Fn+— Cn® — arity car : Cn +— Car
so:Fhn— Cn — sort fun : Fn — Fun

e.g. ar.less = (number, number), so.less = boolean

similar algebras — have the same (or isomorphic) signature

an extension of Alg results from Alg by adding:
* new carriers, and/or

* new elements to the existing carriers, and/or
* new functions

Mar 11th, 2021 A. Blikle - Denotational Engineering; Part 2 (15)

Similarity and homomorphism

Alg; = (Sig, Car,, Fun, car;, fun) fori=1,2 — similar algebras
Sig = (Cn, Fn, ar, so) — common signature

Alg, is a subalgebra of similar Alg, if

¢ car,.cnh C car,.cn forany cn : Cn

« constructors of Fun; coincide with the corresponding constructors
of Fun, on their domains

a homomorphism H : Alg, — Alg,, H={h.cn|cn:Cn}
h.cn : Car,.cn — Car,.cn
arfn =(cny,...,cn,) — arity
so.fn=cn — sort
(ay,...,a,) : cary.cny X ... X cary.cn,

kernel of H in Alg, — the image of Alg, in Alg,

h.cn.(fun,.fn.(a,,...,a,)) = fun,.fn.(h.cn,.a,,...,h.cn.a,)

Mar 11th, 2021 A. Blikle - Denotational Engineering; Part 2 (15)

Reachable algebras and abstract syntax

reachable subalgebra — all elements constructible by constructors
reachable algebra — identical to its (unique) reachable subalgebra
Int = (Posint, 1, +) is a reachable subalgebra of Num = (Number, 1,+)

abstract syntax over Sig a reachable algebra denoted AbsSyn(Siq)
Sig = (Cn, Fn, ar, so)

carriers — formal languages over Alphabet =Fn | {(,) } | {,}

with every fn : Fn we assign a constructor of languages

+ : Integer x Integer — Integer — a constructor of numbers
[+] : IntEXp X IntExp — INntEXp — a corresponding constructor of expr.
[+].(expy, expy) =+ ©'(©exp; ©,'©exp,©)

= +(exp,, €Xp,) — a simplified notation for constructors

equational grammar:

IntExp ={1.}©{(} ©{)} |
(+1© {(} © IntExp © {,} © IntExp © {)}

=1 |
+(IntExp, IntExp) — a simplified notation for grammars

Mar 11th, 2021 A. Blikle - Denotational Engineering; Part 2 (15)

Two facts about algebras

generated from the

S —
@ signature of Alg,

V reachable
subalgebra

D D, kernel of D,

For every Alg with Sig there is exactly one homomorphism
D, : AbsSyn(Sig) — Alg

If Alg, and Alg, are similar and Alg, is reachable then there is at most
one homomorphism
H : Alg, — Alg, (H : Alg, — Reachable.Alg,)

Mar 11th, 2021 A. Blikle - Denotational Engineering; Part 2 (15)

10

Ambiguous and unambiguous algebras

AbsSy(Sig)

An algebra is called ambiguous, if
Its unigue homomorphism from
abstract syntax is not a one-one
homomorphism (if it is gluing)

Algebra Alg, is said to be
not more ambiguous than
Alg,, if D4 is gluing not
more then D.,.

\ D12 /

If
- Alg, and Alg, are similar (have a common signature) and
- Alg, Is reachable,

then

the (unique) homomorphism D,, : Alg, — Alg, exists iff Alg; < Alg..

If D, is an isomorphism then Alg, is unambiguous, and the (unique)
homomorphism Dy, : Alg, — Alg, exists (D;, =D;1 e D,)

Mar 11th, 2021 A. Blikle - Denotational Engineering; Part 2 (15)

11

Syntactic algebras versus grammars

An algebra is called a syntactic algebra, if it is a reachable algebra of
words.

DEF A skeleton function: f.(Xq,...,X) = W;Xq... WX W, 1.
(Wy ...W, W,,,) — skeleton

F.(exp-b, ins;, Ins,) = if exp-b then ins, else ins, fi — F is skeleton f.

F.(exp-b, insy, ins,) = if exp-b then inls.2 else inls1 fi — Fis not skeleton f

DEF A contex-free algebra — all its constructors are skeleton functions

For every context-free algebra there is an equational grammar that
generates is carriers.

For every equational grammar there is a context-free algebra with
carriers defined by that grammar

Mar 11th, 2021 A. Blikle - Denotational Engineering; Part 2 (15) 12

Colloquial syntax versus traditional approach

CONCRETE SYNTAX
ConExp = 1| (ConExp + ConExp) |
(ConExp * ConExp)

Parentheses are

optional
COLLOQUIAL SYNTAX
ColExp = 1| (ColExp + ColExp) |
+
(g(c))lllé))((p « (C:IC())IIEE;(p) I This requires a redefinition of
X X our algebra of denotations
ColExp * ColExp

TRADITIONAL APPROACH
Expression = Component | Expression + Component
Component = Factor | Factor * Component
Factor =1 | (EXpression)

Mar 11th, 2021 A. Blikle - Denotational Engineering; Part 2 (15)

A recapitulation of an algebraic model of
a programming language

0% creativity
algorithm

If Co is an isomorphism,
Cs=Co'leAs

The denotational
semantics of AbsSy
(automatic derivation)

98% creativity
1% creativity

The denotational
semantics of ConSy
(automatic derivation)

Rt restoring Nation

Two steps of program execution:
1. restoring transformation
2. interpretation/compilation based on Cs.

1% creativity

Mar 11th, 2021 A. Blikle - Denotational Engineering; Part 2 (15) 14

Mar 11th, 2021 A. Blikle - Denotational Engineering; Part 2 (15)

