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Many-sorted algebras
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A BAD NEWS

This theory is technically a bit complicated.

A GOOD NEWS

You do not need to master it very deeply.



Many-sorted algebras intuitively
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The algebra of data 

NumBool

1 : ⟼ NumE 

+ : NumE x NumE ⟼ NumE

* : NumE x NumE ⟼ NumE

= : NumE x NumE ⟼ BoolE 

< : NumE x NumE ⟼ BoolE 

tt : ⟼ BoolE 

not : BoolE ⟼ BoolE 

or : BoolE x BoolE ⟼ BoolE

The algebra of expressions 

NumBoolExp

1 : ⟼ NumExp 

+ : NumExp x NumExp ⟼ NumExp

* : NumExp x NumExp ⟼ NumExp

= : NumExp x NumExp ⟼ BoolExp 

< : NumExp x NumExp ⟼ BoolExp 

tt : ⟼ BoolExp 

not : BoolExp ⟼ BoolExp 

or : BoolExp x BoolExp ⟼ BoolExp

Due to abstract errors all functions (in this case) can be made total

signature signature

similar

algebras



Abstract and concrete syntax
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1 : ⟼ NumExp 

+ : NumExp x NumExp ⟼ NumExp

* : NumExp x NumExp ⟼ NumExp

= : NumExp x NumExp ⟼ BoolExp

< : NumExp x NumExp ⟼ BoolExp 

tt : ⟼ BoolExp 

not : BoolExp ⟼ BoolExp

or : BoolExp x BoolExp ⟼ BoolExp

Algebra of expressions NumBoolExp repeated

Prefix notation: not(<(+(1,*(1,1),+(1,1)))

NumExp = 1 | +(NumExp, NumExp) | *(NumExp, NumExp)

BoolExp = tt | =(NumExp, NumExp) | <(NumExp, NumExp) |

not(BoolExp) | or(BoolExp, BoolExp)

Abstract syntax

Concrete syntax

NumExp = 1 | (NumExp + NumExp) | (NumExp * NumExp)

BoolExp = tt | (NumExp = NumExp) | (NumExp < NumExp) |

not(BoolExp) | (BoolExp or BoolExp)

Infix notation: not((1+(1*1)) < (1+1))



Abstract, concrete and colloquial syntax
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not(<(+(1,*(1,1),+(1,1)))

Abstract syntax – algorithmically derivable from algebra's signature 

no creativity

Colloquial syntax – a restoring transformation: concrete  colloquial

not(1+1*1 < 1+1) ― here the omission of "unnecessary" parentheses

Colloquial assumptions

* binds stronger than +

* and + bind stronger than <

creativity

Concrete syntax – an isomomorphic transformation:  abstract → concrete 

not((1+(1*1)) < (1+1)) creativity



Denotational semantics of concrete syntax
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A two-sorted homomorphism

SN : NumExp ⟼ NumE

SB : BooExp  ⟼ BoolE

Semantic clauses (two examples):

SN[1] = 1

SN[(exp-1 + exp-2)] =

SN[exp-1] + SN[exp-2] ≥ max ➔ 'overflow'

true ➔ SN[exp-1] + SN[exp-2]

max ― maximal number for a current implementation

The meaning of a whole 

is a combination of the 

meanings of its parts



Many-sorted algebras formally
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Alg = (Sig, Car, Fun, car, fun) ― algebra

Sig = (Cn, Fn, ar, so) ― signature

Car ― a finite family of sets called carriers

Fun ― a finite family of function called constructors

Cn ― finite set of words; carrier names

Fn ― finite set of words; function names

ar  : Fn ⟼ Cnc* ― arity car : Cn ⟼ Car

so : Fn ⟼ Cn ― sort fun : Fn ⟼ Fun

e.g. ar.less = (number, number), so.less = boolean

similar algebras ― have the same (or isomorphic) signature

an extension of Alg results from Alg by adding:

• new carriers, and/or

• new elements to the existing carriers, and/or

• new functions



Similarity and homomorphism
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Algi = (Sig, Cari, Funi, cari, funi) for i = 1,2 ― similar algebras

Sig = (Cn, Fn, ar, so) ― common signature

Alg1 is a subalgebra of similar Alg2 if

• car1.cn ⊂ car2.cn for any cn : Cn

• constructors of Fun1 coincide with the corresponding constructors 

of Fun2 on their domains

a homomorphism H : Alg1 ⟼ Alg2, H = {h.cn | cn : Cn}

h.cn : Car1.cn ⟼ Car2.cn

ar.fn  = (cn1,…,cnn) ― arity 

so.fn = cn ― sort

(a1,…,an) : car1.cn1 x … x car1.cnn

kernel of H in Alg2 ― the image of Alg1 in Alg2

h.cn.(fun1.fn.(a1,…,an)) = fun2.fn.(h.cn1.a1,…,h.cnn.an)



Reachable algebras and abstract syntax
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reachable subalgebra ― all elements constructible by constructors 

reachable algebra ― identical to its (unique) reachable subalgebra

Int = (PosInt, 1, +) is a reachable subalgebra of Num = (Number, 1,+)

abstract syntax over Sig a reachable algebra denoted AbsSyn(Sig)

Sig = (Cn, Fn, ar, so)

carriers ― formal languages over Alphabet = Fn | { (, ) } | {,}

with every fn : Fn we assign a constructor of languages

+ : Integer x Integer ⟼ Integer ― a constructor of numbers

[+] : IntExp x IntExp ⟼ IntExp ― a corresponding constructor of expr.

[+].(exp1, exp2) = '+' © '(' © exp1 © ',' © exp2 © ')'

= +(exp1, exp2) ― a simplified notation for constructors

equational grammar:

IntExp = {1.} © {(} © {)} | 

{+} © {(} © IntExp © {,} © IntExp © {)}

= 1 | 

+(IntExp, IntExp) ― a simplified notation for grammars



Two facts about algebras
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For every Alg with Sig there is exactly one homomorphism 

D2 : AbsSyn(Sig) ⟼ Alg 

If Alg1 and Alg2 are similar and Alg1 is reachable then there is at most 

one homomorphism

H : Alg1 ⟼ Alg2 (H : Alg1 ⟼ Reachable.Alg2)

reachable

subalgebra

kernel of D2

generated from the 

signature of Alg2



Ambiguous and unambiguous algebras
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If

- Alg1 and Alg2 are similar (have a common signature) and 

- Alg1 is reachable, 

then

the (unique) homomorphism D12 : Alg1 ⟼ Alg2 exists iff Alg1 ≼ Alg2. 

An algebra is called ambiguous, if 

its unique homomorphism from 

abstract syntax is not a one-one 

homomorphism (if it is gluing)

Algebra Alg1 is said to be 

not more ambiguous than 

Alg2, if D1 is gluing not 

more then D2.

If D1 is an isomorphism then Alg1 is unambiguous, and the (unique) 

homomorphism D12 : Alg1 ⟼ Alg2 exists (D12 = D1
-1 ● D2)

D12



Syntactic algebras versus grammars
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An algebra is called a syntactic algebra, if it is a reachable algebra of 

words.

DEF A skeleton function: f.(x1,…,xk) = w1x1…wkxnwk+1.

(w1,…wk, wk+1) ― skeleton

DEF A contex-free algebra – all its constructors are skeleton functions

For every context-free algebra there is an equational grammar that 

generates is carriers.

For every equational grammar there is a context-free algebra with 

carriers defined by that grammar

F.(exp-b, ins1, ins2) = if exp-b then ins1 else ins2 fi ― F is skeleton f.

F.(exp-b, ins1, ins2) = if exp-b then ins2 else ins1 fi ― F is not skeleton f
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COLLOQUIAL SYNTAX

ColExp = 1 | (ColExp + ColExp) | 

ColExp + ColExp |

(ColExp * ColExp) | 

ColExp * ColExp

TRADITIONAL APPROACH

Expression = Component | Expression + Component

Component = Factor | Factor * Component

Factor = 1 | (Expression)

This requires a redefinition of 

our algebra of denotations

Colloquial syntax  versus traditional approach 

CONCRETE SYNTAX

ConExp = 1 | (ConExp + ConExp) | 

(ConExp * ConExp)
Parentheses are 

optional



A recapitulation of an algebraic model of
a programming language

If Co is an isomorphism,

Cs = Co-1 ● As

98% creativity

0% creativity 

algorithm

1% creativity

1% creativity

Mar 11th, 2021

The denotational

semantics of AbsSy

(automatic derivation)
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restoring transformation

Two steps of program execution:

1. restoring transformation

2. interpretation/compilation based on Cs.

The denotational

semantics of ConSy

(automatic derivation)
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Thank you for 

your attention 


