
A Denotational Engineering

of Programming Languages
…

Part 2:Many-sorted algebras

(Sections 2.10 – 2.14 of the book)

Andrzej Jacek Blikle

March 11th, 2021

Many-sorted algebras

Mar 11th, 2021 A. Blikle - Denotational Engineering; Part 2 (15) 2

A BAD NEWS

This theory is technically a bit complicated.

A GOOD NEWS

You do not need to master it very deeply.

Many-sorted algebras intuitively

Mar 11th, 2021 A. Blikle - Denotational Engineering; Part 2 (15) 3

The algebra of data

NumBool

1 : ⟼ NumE

+ : NumE x NumE ⟼ NumE

* : NumE x NumE ⟼ NumE

= : NumE x NumE ⟼ BoolE

< : NumE x NumE ⟼ BoolE

tt : ⟼ BoolE

not : BoolE ⟼ BoolE

or : BoolE x BoolE ⟼ BoolE

The algebra of expressions

NumBoolExp

1 : ⟼ NumExp

+ : NumExp x NumExp ⟼ NumExp

* : NumExp x NumExp ⟼ NumExp

= : NumExp x NumExp ⟼ BoolExp

< : NumExp x NumExp ⟼ BoolExp

tt : ⟼ BoolExp

not : BoolExp ⟼ BoolExp

or : BoolExp x BoolExp ⟼ BoolExp

Due to abstract errors all functions (in this case) can be made total

signature signature

similar

algebras

Abstract and concrete syntax

Mar 11th, 2021 A. Blikle - Denotational Engineering; Part 2 (15) 4

1 : ⟼ NumExp

+ : NumExp x NumExp ⟼ NumExp

* : NumExp x NumExp ⟼ NumExp

= : NumExp x NumExp ⟼ BoolExp

< : NumExp x NumExp ⟼ BoolExp

tt : ⟼ BoolExp

not : BoolExp ⟼ BoolExp

or : BoolExp x BoolExp ⟼ BoolExp

Algebra of expressions NumBoolExp repeated

Prefix notation: not(<(+(1,*(1,1),+(1,1)))

NumExp = 1 | +(NumExp, NumExp) | *(NumExp, NumExp)

BoolExp = tt | =(NumExp, NumExp) | <(NumExp, NumExp) |

not(BoolExp) | or(BoolExp, BoolExp)

Abstract syntax

Concrete syntax

NumExp = 1 | (NumExp + NumExp) | (NumExp * NumExp)

BoolExp = tt | (NumExp = NumExp) | (NumExp < NumExp) |

not(BoolExp) | (BoolExp or BoolExp)

Infix notation: not((1+(1*1)) < (1+1))

Abstract, concrete and colloquial syntax

Mar 11th, 2021 A. Blikle - Denotational Engineering; Part 2 (15) 5

not(<(+(1,*(1,1),+(1,1)))

Abstract syntax – algorithmically derivable from algebra's signature

no creativity

Colloquial syntax – a restoring transformation: concrete  colloquial

not(1+1*1 < 1+1) ― here the omission of "unnecessary" parentheses

Colloquial assumptions

* binds stronger than +

* and + bind stronger than <

creativity

Concrete syntax – an isomomorphic transformation: abstract → concrete

not((1+(1*1)) < (1+1)) creativity

Denotational semantics of concrete syntax

Mar 11th, 2021 A. Blikle - Denotational Engineering; Part 2 (15) 6

A two-sorted homomorphism

SN : NumExp ⟼ NumE

SB : BooExp ⟼ BoolE

Semantic clauses (two examples):

SN[1] = 1

SN[(exp-1 + exp-2)] =

SN[exp-1] + SN[exp-2] ≥ max ➔ 'overflow'

true ➔ SN[exp-1] + SN[exp-2]

max ― maximal number for a current implementation

The meaning of a whole

is a combination of the

meanings of its parts

Many-sorted algebras formally

Mar 11th, 2021 A. Blikle - Denotational Engineering; Part 2 (15) 7

Alg = (Sig, Car, Fun, car, fun) ― algebra

Sig = (Cn, Fn, ar, so) ― signature

Car ― a finite family of sets called carriers

Fun ― a finite family of function called constructors

Cn ― finite set of words; carrier names

Fn ― finite set of words; function names

ar : Fn ⟼ Cnc* ― arity car : Cn ⟼ Car

so : Fn ⟼ Cn ― sort fun : Fn ⟼ Fun

e.g. ar.less = (number, number), so.less = boolean

similar algebras ― have the same (or isomorphic) signature

an extension of Alg results from Alg by adding:

• new carriers, and/or

• new elements to the existing carriers, and/or

• new functions

Similarity and homomorphism

Mar 11th, 2021 A. Blikle - Denotational Engineering; Part 2 (15) 8

Algi = (Sig, Cari, Funi, cari, funi) for i = 1,2 ― similar algebras

Sig = (Cn, Fn, ar, so) ― common signature

Alg1 is a subalgebra of similar Alg2 if

• car1.cn ⊂ car2.cn for any cn : Cn

• constructors of Fun1 coincide with the corresponding constructors

of Fun2 on their domains

a homomorphism H : Alg1 ⟼ Alg2, H = {h.cn | cn : Cn}

h.cn : Car1.cn ⟼ Car2.cn

ar.fn = (cn1,…,cnn) ― arity

so.fn = cn ― sort

(a1,…,an) : car1.cn1 x … x car1.cnn

kernel of H in Alg2 ― the image of Alg1 in Alg2

h.cn.(fun1.fn.(a1,…,an)) = fun2.fn.(h.cn1.a1,…,h.cnn.an)

Reachable algebras and abstract syntax

Mar 11th, 2021 A. Blikle - Denotational Engineering; Part 2 (15) 9

reachable subalgebra ― all elements constructible by constructors

reachable algebra ― identical to its (unique) reachable subalgebra

Int = (PosInt, 1, +) is a reachable subalgebra of Num = (Number, 1,+)

abstract syntax over Sig a reachable algebra denoted AbsSyn(Sig)

Sig = (Cn, Fn, ar, so)

carriers ― formal languages over Alphabet = Fn | { (,) } | {,}

with every fn : Fn we assign a constructor of languages

+ : Integer x Integer ⟼ Integer ― a constructor of numbers

[+] : IntExp x IntExp ⟼ IntExp ― a corresponding constructor of expr.

[+].(exp1, exp2) = '+' © '(' © exp1 © ',' © exp2 © ')'

= +(exp1, exp2) ― a simplified notation for constructors

equational grammar:

IntExp = {1.} © {(} © {)} |

{+} © {(} © IntExp © {,} © IntExp © {)}

= 1 |

+(IntExp, IntExp) ― a simplified notation for grammars

Two facts about algebras

Mar 11th, 2021 A. Blikle - Denotational Engineering; Part 2 (15) 10

For every Alg with Sig there is exactly one homomorphism

D2 : AbsSyn(Sig) ⟼ Alg

If Alg1 and Alg2 are similar and Alg1 is reachable then there is at most

one homomorphism

H : Alg1 ⟼ Alg2 (H : Alg1 ⟼ Reachable.Alg2)

reachable

subalgebra

kernel of D2

generated from the

signature of Alg2

Ambiguous and unambiguous algebras

Mar 11th, 2021 A. Blikle - Denotational Engineering; Part 2 (15) 11

If

- Alg1 and Alg2 are similar (have a common signature) and

- Alg1 is reachable,

then

the (unique) homomorphism D12 : Alg1 ⟼ Alg2 exists iff Alg1 ≼ Alg2.

An algebra is called ambiguous, if

its unique homomorphism from

abstract syntax is not a one-one

homomorphism (if it is gluing)

Algebra Alg1 is said to be

not more ambiguous than

Alg2, if D1 is gluing not

more then D2.

If D1 is an isomorphism then Alg1 is unambiguous, and the (unique)

homomorphism D12 : Alg1 ⟼ Alg2 exists (D12 = D1
-1 ● D2)

D12

Syntactic algebras versus grammars

Mar 11th, 2021 A. Blikle - Denotational Engineering; Part 2 (15) 12

An algebra is called a syntactic algebra, if it is a reachable algebra of

words.

DEF A skeleton function: f.(x1,…,xk) = w1x1…wkxnwk+1.

(w1,…wk, wk+1) ― skeleton

DEF A contex-free algebra – all its constructors are skeleton functions

For every context-free algebra there is an equational grammar that

generates is carriers.

For every equational grammar there is a context-free algebra with

carriers defined by that grammar

F.(exp-b, ins1, ins2) = if exp-b then ins1 else ins2 fi ― F is skeleton f.

F.(exp-b, ins1, ins2) = if exp-b then ins2 else ins1 fi ― F is not skeleton f

Mar 11th, 2021 A. Blikle - Denotational Engineering; Part 2 (15) 13

COLLOQUIAL SYNTAX

ColExp = 1 | (ColExp + ColExp) |

ColExp + ColExp |

(ColExp * ColExp) |

ColExp * ColExp

TRADITIONAL APPROACH

Expression = Component | Expression + Component

Component = Factor | Factor * Component

Factor = 1 | (Expression)

This requires a redefinition of

our algebra of denotations

Colloquial syntax versus traditional approach

CONCRETE SYNTAX

ConExp = 1 | (ConExp + ConExp) |

(ConExp * ConExp)
Parentheses are

optional

A recapitulation of an algebraic model of
a programming language

If Co is an isomorphism,

Cs = Co-1 ● As

98% creativity

0% creativity

algorithm

1% creativity

1% creativity

Mar 11th, 2021

The denotational

semantics of AbsSy

(automatic derivation)

A. Blikle - Denotational Engineering; Part 2 (15) 14

restoring transformation

Two steps of program execution:

1. restoring transformation

2. interpretation/compilation based on Cs.

The denotational

semantics of ConSy

(automatic derivation)

Mar 11th, 2021 15A. Blikle - Denotational Engineering; Part 2 (15)

Thank you for

your attention

